Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2,2'-bipyridine- $\kappa^2 N$, N')(4-methylbenzoato- $\kappa^2 O, O'$)copper(II) iodide hemihydrate

Chuan-Mei Tang and Guo-Hua Deng*

College of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China Correspondence e-mail: ghdeng@126.com

Received 19 July 2008; accepted 30 July 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.047; wR factor = 0.149; data-to-parameter ratio = 14.5.

The title compound, $[Cu(C_8H_7O_2)(C_{10}H_8N_2)_2]I\cdot 0.5H_2O$, was obtained by the hydrothermal reaction of copper(I) iodide, 4methylbenzoic acid and 2,2'-bipyridine. The initial reactant of Cu^I was oxidized to Cu^{II}. The asymmetric unit contains two independent complex molecules, two I⁻ ions and one water molecule. Each Cu^{II} atom is coordinated by two O atoms from a 4-methylbenzoate ligand and four N atoms from two 2,2'bipyridine ligands, displaying a distorted octahedral geometry. The structure involves $O-H \cdots I$ hydrogen bonds between the water molecule and iodide ions and π - π stacking interactions between the benzene and pyridyl rings [centroid-centroid distance = 3.79(1) Å] and between the pyridyl rings [centroid–centroid distance = 3.87(1) Å].

Related literature

For related literature, see: Ma & Deng (2008); Mao et al. (2001); Song et al. (2008a,b,c,d).

Experimental

Crystal data

[Cu(C₈H₇O₂)(C₁₀H₈N₂)₂]I·0.5H₂O $M_r = 646.96$ Triclinic, $P\overline{1}$ a = 14.6698 (4) Å b = 15.3588 (4) Å c = 15.4224 (7) Å $\alpha = 100.943 \ (2)^{\circ}$ $\beta = 114.345 (2)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.525, T_{\max} = 0.624$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.149$ S = 1.039564 reflections 660 parameters

 $\gamma = 111.996 \ (2)^{\circ}$ V = 2680.64 (19) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.00 \text{ mm}^{-1}$ T = 296 (2) K $0.37 \times 0.30 \times 0.26 \text{ mm}$

29909 measured reflections 9564 independent reflections 6740 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$

3 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 1.55 \text{ e } \text{\AA}^{-1}$ $\Delta \rho_{\rm min} = -1.53 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Cu1-O1	1.976 (4)	Cu2-O3	1.974 (3)
Cu1-O2	2.769 (4)	Cu2-O4	2.832 (3)
Cu1-N6	1.987 (4)	Cu2-N8	1.997 (4)
Cu1-N3	2.000 (4)	Cu2-N2	2.001 (4)
Cu1-N5	2.060 (4)	Cu2-N7	2.038 (4)
Cu1-N4	2.192 (4)	Cu2-N1	2.181 (4)

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} O1W - H1W \cdots I1^{i} \\ O1W - H2W \cdots I1^{ii} \end{array} $	0.82	3.15	3.935 (8)	161
	0.82	2.76	3.568 (8)	170

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y + 1, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge South China University of Technology for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2148).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.

Ma, D.-Y. & Deng, G.-H. (2008). Acta Cryst. C64, m271-m273.

Mao, Z.-W., Heinemann, F. W., Liehr, G. & van Eldik, R. (2001). J. Chem. Soc. Dalton Trans. pp. 3652-3662.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, W.-D., Gu, C.-S., Hao, X.-M. & Yan, J.-B. (2008a). Acta Cryst. E64, m522.

Song, W. D., Vang, H. & Ji, L.-L. (2008b). Acta Cryst. E64, m548. Song, W.-D., Wang, H. & Miao, Y.-L. (2008c). Acta Cryst. E64, m716.

Song, W.-D., Yan, J.-B. & Hao, X.-M. (2008d). Acta Cryst. E64, m919-m920.

Acta Cryst. (2008). E64, m1111-m1112 [doi:10.1107/S1600536808024252]

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)(4-methylbenzoato- $\kappa^2 O, O'$)copper(II) iodide hemihydrate

C.-M. Tang and G.-H. Deng

Comment

As a building block, 4-methylbenzoate ligand is an excellent candidate for the construction of supramolecular complexes (Ma & Deng, 2008; Song *et al.*, 2008*a*,b,c,d). Recently, we obtained the title mononuclear complex by the hydrothermal reaction of CuI, 4-methylbenzoic acid and 2,2'-bipyridine.

As illustrated in Fig. 1, the asymmetric unit of the title compound contains two independent complex molecules, two I ions and one lattice water molecule. Each Cu^{II} atom has a distorted octahedral coordination geometry, involving two carboxylate O atoms from one 4-methylbenzoate ligand, and four N atoms from two 2,2'-bipyridine ligands. One Cu—O distance is distinctly longer than the others for each Cu^{II} atom (Table 1), but still within the range of a significant interaction (Mao *et al.* 2001). Judged from the blue crystals, the initial reactant of Cu^{I} was thus oxidated to Cu^{II} in the hydrothermal reaction. The structure involves O—H…I hydrogen bonds between the water molecule and I ions (Table 2) and π - π stacking interactions (Fig. 2). The centroid–centroid distances are 3.79 (1)Å between the adjacent phenyl and pyridyl rings, and 3.87 (1)Å between the adjacent pyridyl rings.

Experimental

A mixture of CuI (0.1 g, 0.5 mmol), 4-methylbenzoic acid (0.068 g, 0.5 mmol), 2,2'-bipyridine (0.078 g, 0.5 mmol) and H₂O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h^{-1} . Block colorless crystals were obtained.

Refinement

C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 (CH) and 0.96 (CH₃) Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH group or $1.5U_{eq}(C)$ for CH₃ group. H atoms of water molecule were tentatively located in difference Fourier maps and refined with distance restraints of O–H = 0.84 (1) and H…H = 1.35 (1) Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. The highest residual electron density was 1.14 Å from atom I1 and the deepest hole 0.81 Å from atom I1.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. A packing view of the title compound. Hydrogen bonds are depicted as dashed lines.

$Bis(2,2'-bipyridine-\kappa^2 N, N')$ (4-methylbenzoato- $\kappa^2 O, O')copper(II)$ iodide hemihydrate

Crystal data	
[Cu(C ₈ H ₇ O ₂)(C ₁₀ H ₈ N ₂) ₂]I·0.5H ₂ O	Z = 4
$M_r = 646.96$	$F_{000} = 1288$
Triclinic, PT	$D_{\rm x} = 1.603 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 14.6698 (4) Å	Cell parameters from 5300 reflections
b = 15.3588 (4) Å	$\theta = 1.3 - 28.0^{\circ}$
c = 15.4224 (7) Å	$\mu = 2.00 \text{ mm}^{-1}$
$\alpha = 100.943 \ (2)^{\circ}$	T = 296 (2) K
$\beta = 114.345 \ (2)^{\circ}$	Block, blue
$\gamma = 111.996 \ (2)^{\circ}$	$0.37 \times 0.30 \times 0.26 \text{ mm}$
$V = 2680.64(19) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	9564 independent reflections
Radiation source: fine-focus sealed tube	6740 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 296(2) K	$\theta_{\text{max}} = 25.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.525, T_{\max} = 0.624$	$k = -18 \rightarrow 18$
29909 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0774P)^2 + 2.4876P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
9564 reflections	$\Delta \rho_{max} = 1.56 \text{ e} \text{ Å}^{-3}$
660 parameters	$\Delta \rho_{min} = -1.53 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site logation: structure inverient direct	

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and	isotropic or equivalent isotro	pic displacement	parameters (Å	(2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5583 (5)	-0.0992 (4)	0.8879 (4)	0.0588 (14)
H1	0.6232	-0.0884	0.8844	0.071*
C2	0.5284 (6)	-0.1583 (5)	0.9396 (5)	0.0685 (16)
H2	0.5726	-0.1862	0.9707	0.082*
C3	0.4332 (6)	-0.1746 (5)	0.9441 (5)	0.0787 (19)
Н3	0.4115	-0.2137	0.9787	0.094*
C4	0.3693 (5)	-0.1328 (5)	0.8973 (5)	0.0698 (17)
H4	0.3035	-0.1439	0.8992	0.084*
C5	0.4036 (4)	-0.0738 (4)	0.8470 (4)	0.0515 (12)
C6	0.3422 (4)	-0.0237 (4)	0.7958 (4)	0.0543 (13)
C7	0.2355 (6)	-0.0438 (5)	0.7799 (6)	0.083 (2)
H7	0.1976	-0.0916	0.7998	0.099*
C8	0.1861 (6)	0.0083 (7)	0.7338 (7)	0.100 (3)
H8	0.1139	-0.0047	0.7221	0.121*
С9	0.2416 (7)	0.0782 (7)	0.7056 (6)	0.091 (2)
Н9	0.2095	0.1151	0.6767	0.110*
C10	0.3481 (5)	0.0941 (5)	0.7206 (5)	0.0719 (17)
H10	0.3862	0.1408	0.6997	0.086*
C11	0.3340 (4)	-0.0838 (4)	0.5409 (4)	0.0536 (13)
H11	0.2900	-0.0645	0.5605	0.064*
C12	0.2824 (5)	-0.1491 (4)	0.4398 (4)	0.0617 (15)
H12	0.2052	-0.1726	0.3913	0.074*
C13	0.3469 (5)	-0.1793 (4)	0.4111 (4)	0.0632 (15)
H13	0.3130	-0.2250	0.3433	0.076*
C14	0.4609 (5)	-0.1414 (4)	0.4830 (4)	0.0573 (13)
H14	0.5056	-0.1600	0.4640	0.069*
C15	0.5095 (4)	-0.0754 (3)	0.5840 (4)	0.0441 (11)
C16	0.6312 (4)	-0.0306 (3)	0.6684 (4)	0.0443 (11)
C17	0.7116 (5)	-0.0489 (4)	0.6564 (5)	0.0617 (14)
H17	0.6910	-0.0899	0.5912	0.074*
C18	0.8221 (5)	-0.0065 (5)	0.7407 (5)	0.0733 (17)
H18	0.8765	-0.0189	0.7334	0.088*
C19	0.8507 (5)	0.0547 (5)	0.8365 (5)	0.0703 (16)
H19	0.9242	0.0830	0.8950	0.084*
C20	0.7693 (4)	0.0734 (4)	0.8442 (4)	0.0595 (14)
H20	0.7894	0.1163	0.9083	0.071*
C21	0.6656 (4)	0.2547 (4)	0.8568 (4)	0.0494 (12)
C22	0.7626 (4)	0.3594 (4)	0.9370 (4)	0.0472 (12)

C23	0.8244 (5)	0.3793 (5)	1.0407 (4)	0.0666 (16)
H23	0.8066	0.3261	1.0623	0.080*
C24	0.9126 (5)	0.4775 (5)	1.1130 (5)	0.0778 (18)
H24	0.9520	0.4891	1.1829	0.093*
C25	0.9441 (5)	0.5588 (4)	1.0854 (5)	0.0642 (16)
C26	0.8836 (5)	0.5382 (4)	0.9817 (5)	0.0664 (16)
H26	0.9037	0.5911	0.9600	0.080*
C27	0.7936 (5)	0.4407 (4)	0.9084 (4)	0.0577 (13)
H27	0.7531	0.4297	0.8387	0.069*
C28	1.0395 (6)	0.6647 (5)	1.1648 (6)	0.099 (2)
H28A	1.0074	0.7023	1.1859	0.148*
H28B	1.0801	0.6992	1.1353	0.148*
H28C	1.0924	0.6605	1.2243	0.148*
C36	1.0037 (6)	0.3445 (7)	0.4202 (7)	0.105 (3)
H36A	0.9998	0.3090	0.3592	0.158*
H36B	1.0105	0.3080	0.4644	0.158*
H36C	1.0701	0.4127	0.4573	0.158*
C30	0.8952 (5)	0.3506 (5)	0.3882 (5)	0.0709 (17)
C31	0.8731 (6)	0.4128 (7)	0.3403 (6)	0.098 (3)
H31	0.9283	0.4540	0.3288	0.118*
C32	0.7725 (5)	0.4176 (5)	0.3080 (5)	0.0744 (18)
H32	0.7607	0.4606	0.2751	0.089*
C33	0.6900 (4)	0.3575 (4)	0.3255 (4)	0.0432 (11)
C34	0.7122 (4)	0.2956 (4)	0.3758 (4)	0.0521(12)
H34	0.6580	0.2551	0.3886	0.063*
C35	0 5819 (4)	0.3622(4)	0 2935 (4)	0.0461 (11)
C37	0.6852 (4)	0.6225(4)	0.2900(1) 0.4203(5)	0.0648(15)
H37	0.7121	0.6057	0.3783	0.078*
C38	0.7636 (5)	0 6975 (4)	0.5194 (5)	0.0746 (18)
H38	0.8424	0.7318	0.5438	0.090*
C39	0.7249(5)	0.7213 (4)	0.5815(5)	0.0669 (16)
H39	0.7775	0.7697	0.6501	0.080*
C40	0.6076 (5)	0.6734 (4)	0.5428(4)	0.0562 (13)
H40	0.5798	0.6901	0.5840	0.067*
C41	0.5320 (4)	0.6000 (3)	0.4412(4)	0.007 0.0441(11)
C42	0.3526(1) 0.4036(4)	0.5452(3)	0.3899 (3)	0.0417(11)
C42	0.3480 (5)	0.5727(4)	0.3375(3)	0.0417(11) 0.0569(13)
H43	0.3898	0.6275	0.4960	0.0509 (15)
C44	0.2272 (5)	0.5173 (5)	0.4759 (5)	0.0681 (16)
H44	0.1867	0.5358	0.4015	0.082*
C45	0.1601 (5)	0.3358 0.4352(4)	0.2830 (5)	0.062
U45	0.1091 (3)	0.4352 (4)	0.2850 (5)	0.0027 (13)
C46	0.0886	0.3733	0.2457 0.2458(4)	0.075
U40	0.1902	0.3567	0.1824	0.0500 (12)
C47	0.1902	0.3367	0.1058 (5)	0.001°
UT/	0.2000 (3)	0.2330 (4)	0.1030 (3)	0.0370 (14)
C/8	0.2047	0.22/1 0.1509 (4)	0.1070	0.072°
U+0 H/8	0.1041 (3)	0.1300 (4)	0.0130 (0)	0.0713(17)
C40	0.1474 0.1574 (5)	0.1646 (5)	-0.0771(6)	0.080°
U+7	0.13/4(3)	0.1040(3)	0.0771(0)	0.002 (2)

H49	0.1013	0.1087	-0.1408	0.098*
C50	0.2138 (5)	0.2621 (5)	-0.0742 (4)	0.0706 (17)
H50	0.1966	0.2717	-0.1356	0.085*
C51	0.2964 (4)	0.3448 (4)	0.0223 (4)	0.0499 (12)
C52	0.3624 (4)	0.4512 (4)	0.0340 (4)	0.0481 (12)
C29	0.8130 (5)	0.2930 (4)	0.4069 (5)	0.0606 (14)
H29	0.8261	0.2514	0.4414	0.073*
C53	0.3479 (5)	0.4781 (5)	-0.0497 (4)	0.0609 (14)
H53	0.2921	0.4294	-0.1177	0.073*
C54	0.4170 (6)	0.5774 (5)	-0.0305 (5)	0.0700 (17)
H54	0.4096	0.5968	-0.0856	0.084*
C55	0.4974 (5)	0.6486 (5)	0.0704 (5)	0.0643 (15)
H55	0.5449	0.7165	0.0847	0.077*
C56	0.5062 (5)	0.6173 (4)	0.1499 (4)	0.0533 (13)
H56	0.5604	0.6655	0.2183	0.064*
Cu2	0.44994 (5)	0.45165 (4)	0.24535 (4)	0.04330 (16)
Cu1	0.53604 (5)	0.04754 (4)	0.76873 (5)	0.04622 (17)
I1	0.04839 (6)	0.20792 (5)	0.62512 (4)	0.1112 (2)
12	0.98058 (3)	0.14574 (3)	0.13668 (3)	0.07583 (16)
N1	0.4398 (3)	0.5204 (3)	0.1327 (3)	0.0449 (9)
N2	0.3228 (3)	0.3298 (3)	0.1110 (3)	0.0483 (10)
N3	0.3964 (4)	0.0430 (3)	0.7649 (3)	0.0544 (11)
N4	0.4981 (3)	-0.0577 (3)	0.8433 (3)	0.0498 (10)
N5	0.4459 (3)	-0.0467 (3)	0.6130 (3)	0.0440 (9)
N6	0.6613 (3)	0.0313 (3)	0.7616 (3)	0.0479 (10)
N7	0.3464 (3)	0.4665 (3)	0.2964 (3)	0.0416 (9)
N8	0.5707 (3)	0.5723 (3)	0.3818 (3)	0.0478 (10)
01	0.6478 (3)	0.1823 (3)	0.8889 (3)	0.0568 (9)
O2	0.6079 (3)	0.2405 (3)	0.7651 (3)	0.0674 (10)
O3	0.5675 (3)	0.4192 (3)	0.2437 (3)	0.0522 (8)
O4	0.5122 (3)	0.3137 (3)	0.3162 (3)	0.0597 (9)
O1W	0.8745 (9)	0.9386 (6)	0.5468 (7)	0.201 (4)
H2W	0.9082	1.0013	0.5663	0.301*
H1W	0.8900	0.9191	0.5042	0.301*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.063 (3)	0.062 (3)	0.066 (4)	0.034 (3)	0.041 (3)	0.030 (3)
C2	0.075 (4)	0.066 (4)	0.066 (4)	0.034 (3)	0.039 (3)	0.031 (3)
C3	0.093 (5)	0.070 (4)	0.078 (4)	0.029 (4)	0.062 (4)	0.028 (3)
C4	0.069 (4)	0.064 (4)	0.067 (4)	0.018 (3)	0.050 (3)	0.011 (3)
C5	0.049 (3)	0.045 (3)	0.048 (3)	0.015 (2)	0.031 (3)	0.004 (2)
C6	0.042 (3)	0.056 (3)	0.049 (3)	0.017 (2)	0.027 (3)	0.001 (2)
C7	0.058 (4)	0.090 (5)	0.097 (5)	0.035 (4)	0.049 (4)	0.020 (4)
C8	0.060 (4)	0.124 (7)	0.101 (6)	0.050 (5)	0.041 (4)	0.011 (5)
C9	0.079 (5)	0.106 (6)	0.091 (5)	0.071 (5)	0.034 (4)	0.023 (4)
C10	0.067 (4)	0.069 (4)	0.076 (4)	0.046 (3)	0.032 (3)	0.013 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.049 (3)	0.054 (3)	0.048 (3)	0.023 (2)	0.022 (3)	0.018 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.051 (3)	0.065 (4)	0.045 (3)	0.021 (3)	0.016 (3)	0.017 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.068 (4)	0.068 (4)	0.043 (3)	0.028 (3)	0.029 (3)	0.015 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.065 (4)	0.055 (3)	0.056 (3)	0.030 (3)	0.037 (3)	0.017 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.047 (3)	0.040 (2)	0.050 (3)	0.021 (2)	0.029 (2)	0.022 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.048 (3)	0.043 (3)	0.053 (3)	0.027 (2)	0.032 (2)	0.022 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.059 (3)	0.062 (3)	0.070 (4)	0.034 (3)	0.038 (3)	0.019 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.059 (4)	0.083 (4)	0.087 (5)	0.043 (3)	0.042 (4)	0.029 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.042 (3)	0.085 (4)	0.070 (4)	0.030 (3)	0.025 (3)	0.021 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.041 (3)	0.065 (3)	0.055 (3)	0.022 (3)	0.022 (3)	0.015 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.044 (3)	0.054 (3)	0.048 (3)	0.022 (2)	0.031 (3)	0.009 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.039 (3)	0.043 (3)	0.049 (3)	0.016 (2)	0.023 (2)	0.008 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.060 (4)	0.069 (4)	0.052 (3)	0.019 (3)	0.027 (3)	0.023 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.056 (4)	0.084 (5)	0.047 (3)	0.017 (3)	0.014 (3)	0.010 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.041 (3)	0.056 (3)	0.067 (4)	0.015 (3)	0.026 (3)	0.000 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.054 (3)	0.049 (3)	0.083 (5)	0.021 (3)	0.034 (3)	0.019 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	0.055 (3)	0.054 (3)	0.056 (3)	0.027 (3)	0.026 (3)	0.016 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0.057 (4)	0.075 (4)	0.098 (5)	0.013 (3)	0.026 (4)	-0.008 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	0.064 (4)	0.188 (8)	0.124 (6)	0.083 (5)	0.063 (5)	0.107 (7)
C31 $0.059 (4)$ $0.168 (7)$ $0.121 (6)$ $0.064 (5)$ $0.062 (4)$ C32 $0.057 (4)$ $0.097 (5)$ $0.088 (5)$ $0.041 (3)$ $0.041 (3)$ C33 $0.038 (3)$ $0.052 (3)$ $0.039 (3)$ $0.022 (2)$ $0.021 (2)$ C34 $0.050 (3)$ $0.056 (3)$ $0.060 (3)$ $0.027 (2)$ $0.037 (3)$ C35 $0.042 (3)$ $0.055 (3)$ $0.031 (2)$ $0.025 (2)$ $0.015 (2)$ C37 $0.041 (3)$ $0.061 (3)$ $0.071 (4)$ $0.022 (3)$ $0.025 (3)$ C38 $0.036 (3)$ $0.057 (3)$ $0.088 (5)$ $0.020 (3)$ $0.015 (3)$ C39 $0.051 (3)$ $0.053 (3)$ $0.058 (3)$ $0.023 (3)$ $0.009 (3)$ C40 $0.053 (3)$ $0.055 (3)$ $0.044 (3)$ $0.024 (3)$ $0.019 (3)$ C41 $0.042 (3)$ $0.039 (2)$ $0.039 (3)$ $0.017 (2)$ $0.015 (2)$ C42 $0.042 (3)$ $0.039 (2)$ $0.039 (3)$ $0.017 (2)$ $0.020 (2)$ C43 $0.056 (3)$ $0.053 (3)$ $0.054 (3)$ $0.021 (3)$ $0.033 (3)$ C44 $0.070 (4)$ $0.066 (4)$ $0.080 (4)$ $0.032 (3)$ $0.054 (4)$ C45 $0.048 (3)$ $0.060 (3)$ $0.075 (4)$ $0.021 (3)$ $0.038 (3)$ C46 $0.042 (3)$ $0.051 (3)$ $0.021 (3)$ $0.023 (2)$ C47 $0.051 (3)$ $0.051 (3)$ $0.026 (3)$ $0.029 (3)$ C48 $0.051 (3)$ $0.051 (3)$ $0.026 (3)$ $0.015 (3)$ $0.020 (3)$ C51	C30	0.055 (3)	0.109 (5)	0.072 (4)	0.048 (3)	0.039 (3)	0.053 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.059 (4)	0.168 (7)	0.121 (6)	0.064 (5)	0.062 (4)	0.109 (6)
C330.038 (3)0.052 (3)0.039 (3)0.022 (2)0.021 (2)C340.050 (3)0.056 (3)0.060 (3)0.027 (2)0.037 (3)C350.042 (3)0.055 (3)0.031 (2)0.025 (2)0.015 (2)C370.041 (3)0.061 (3)0.071 (4)0.022 (3)0.025 (3)C380.036 (3)0.057 (3)0.088 (5)0.020 (3)0.015 (3)C390.051 (3)0.053 (3)0.058 (3)0.023 (3)0.009 (3)C400.053 (3)0.055 (3)0.044 (3)0.024 (3)0.019 (3)C410.042 (3)0.039 (2)0.039 (3)0.017 (2)0.015 (2)C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.051 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.067 (4)0.045 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.	C32	0.057 (4)	0.097 (5)	0.088 (5)	0.041 (3)	0.041 (3)	0.061 (4)
C34 $0.050 (3)$ $0.056 (3)$ $0.060 (3)$ $0.027 (2)$ $0.037 (3)$ C35 $0.042 (3)$ $0.055 (3)$ $0.031 (2)$ $0.025 (2)$ $0.015 (2)$ C37 $0.041 (3)$ $0.061 (3)$ $0.071 (4)$ $0.022 (3)$ $0.025 (3)$ C38 $0.036 (3)$ $0.057 (3)$ $0.088 (5)$ $0.020 (3)$ $0.015 (3)$ C39 $0.051 (3)$ $0.053 (3)$ $0.044 (3)$ $0.024 (3)$ $0.019 (3)$ C40 $0.053 (3)$ $0.039 (2)$ $0.039 (3)$ $0.017 (2)$ $0.015 (2)$ C42 $0.042 (3)$ $0.039 (2)$ $0.039 (3)$ $0.017 (2)$ $0.015 (2)$ C42 $0.042 (3)$ $0.039 (2)$ $0.039 (3)$ $0.017 (2)$ $0.015 (2)$ C43 $0.056 (3)$ $0.053 (3)$ $0.054 (3)$ $0.021 (3)$ $0.033 (3)$ C44 $0.070 (4)$ $0.066 (4)$ $0.080 (4)$ $0.032 (3)$ $0.054 (4)$ C45 $0.048 (3)$ $0.060 (3)$ $0.075 (4)$ $0.021 (3)$ $0.038 (3)$ C46 $0.042 (3)$ $0.051 (3)$ $0.053 (3)$ $0.015 (2)$ $0.023 (2)$ C47 $0.051 (3)$ $0.051 (3)$ $0.067 (4)$ $0.026 (3)$ $0.029 (3)$ C48 $0.051 (3)$ $0.057 (5)$ $0.044 (5)$ $0.011 (3)$ $0.020 (3)$ C50 $0.049 (3)$ $0.087 (5)$ $0.045 (3)$ $0.026 (3)$ $0.019 (3)$ C51 $0.044 (3)$ $0.064 (3)$ $0.043 (3)$ $0.035 (2)$ $0.025 (2)$ C29 $0.062 (3)$ $0.076 (4)$ $0.070 (4)$ $0.045 (3)$	C33	0.038 (3)	0.052 (3)	0.039 (3)	0.022 (2)	0.021 (2)	0.016 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	0.050 (3)	0.056 (3)	0.060 (3)	0.027 (2)	0.037 (3)	0.025 (3)
C37 0.041 (3) 0.061 (3) 0.071 (4) 0.022 (3) 0.025 (3)C38 0.036 (3) 0.057 (3) 0.088 (5) 0.020 (3) 0.015 (3)C39 0.051 (3) 0.053 (3) 0.058 (3) 0.024 (3) 0.009 (3)C40 0.053 (3) 0.055 (3) 0.044 (3) 0.024 (3) 0.019 (3)C41 0.042 (3) 0.039 (2) 0.039 (3) 0.017 (2) 0.015 (2)C42 0.042 (3) 0.039 (2) 0.039 (3) 0.018 (2) 0.020 (2)C43 0.056 (3) 0.053 (3) 0.054 (3) 0.021 (3) 0.033 (3)C44 0.070 (4) 0.066 (4) 0.080 (4) 0.032 (3) 0.054 (4)C45 0.048 (3) 0.060 (3) 0.075 (4) 0.021 (3) 0.038 (3)C46 0.042 (3) 0.051 (3) 0.053 (3) 0.015 (2) 0.023 (2)C47 0.051 (3) 0.051 (3) 0.067 (4) 0.026 (3) 0.029 (3)C48 0.051 (3) 0.050 (3) 0.084 (5) 0.015 (3) 0.020 (3)C50 0.049 (3) 0.087 (5) 0.045 (3) 0.026 (3) 0.019 (3)C51 0.040 (3) 0.061 (3) 0.041 (3) 0.027 (2) 0.020 (2)C52 0.044 (3) 0.064 (3) 0.045 (3) 0.021 (3)C51 0.042 (3) 0.064 (3) 0.045 (3) 0.025 (2)C29 0.062 (3) 0.076 (4) 0.070 (4) 0.045 (3) 0.029 (3)C53	C35	0.042 (3)	0.055 (3)	0.031 (2)	0.025 (2)	0.015 (2)	0.006 (2)
C38 0.036 (3) 0.057 (3) 0.088 (5) 0.020 (3) 0.015 (3)C39 0.051 (3) 0.053 (3) 0.058 (3) 0.023 (3) 0.009 (3)C40 0.053 (3) 0.055 (3) 0.044 (3) 0.024 (3) 0.019 (3)C41 0.042 (3) 0.039 (2) 0.039 (3) 0.017 (2) 0.015 (2)C42 0.042 (3) 0.039 (2) 0.039 (3) 0.018 (2) 0.020 (2)C43 0.056 (3) 0.053 (3) 0.054 (3) 0.021 (3) 0.033 (3)C44 0.070 (4) 0.066 (4) 0.080 (4) 0.032 (3) 0.054 (4)C45 0.048 (3) 0.060 (3) 0.075 (4) 0.021 (3) 0.038 (3)C46 0.042 (3) 0.045 (3) 0.053 (3) 0.015 (2) 0.023 (2)C47 0.051 (3) 0.051 (3) 0.067 (4) 0.026 (3) 0.029 (3)C48 0.051 (3) 0.051 (3) 0.067 (4) 0.026 (3) 0.020 (2)C50 0.049 (3) 0.087 (5) 0.045 (3) 0.026 (3) 0.019 (3)C51 0.040 (3) 0.061 (3) 0.041 (3) 0.027 (2) 0.020 (2)C52 0.044 (3) 0.064 (3) 0.043 (3) 0.035 (2) 0.025 (2)C29 0.062 (3) 0.076 (4) 0.070 (4) 0.045 (3) 0.041 (3)C53 0.067 (4) 0.094 (5) 0.062 (4) 0.066 (4) 0.048 (4)C55 0.081 (4) 0.067 (4) 0.075 (4) 0.046 (3)	C37	0.041 (3)	0.061 (3)	0.071 (4)	0.022 (3)	0.025 (3)	0.007 (3)
C390.051 (3)0.053 (3)0.058 (3)0.023 (3)0.009 (3)C400.053 (3)0.055 (3)0.044 (3)0.024 (3)0.019 (3)C410.042 (3)0.039 (2)0.039 (3)0.017 (2)0.015 (2)C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C38	0.036 (3)	0.057 (3)	0.088 (5)	0.020 (3)	0.015 (3)	0.000 (3)
C400.053 (3)0.055 (3)0.044 (3)0.024 (3)0.019 (3)C410.042 (3)0.039 (2)0.039 (3)0.017 (2)0.015 (2)C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.051 (3)0.057 (4)0.026 (3)0.029 (3)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.057 (4)0.077 (5)0.011 (3)0.020 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C39	0.051 (3)	0.053 (3)	0.058 (3)	0.023 (3)	0.009 (3)	0.003 (3)
C410.042 (3)0.039 (2)0.039 (3)0.017 (2)0.015 (2)C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C40	0.053 (3)	0.055 (3)	0.044 (3)	0.024 (3)	0.019 (3)	0.010(2)
C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.043 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.076 (4)0.070 (4)0.045 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.046 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C41	0.042 (3)	0.039 (2)	0.039 (3)	0.017 (2)	0.015 (2)	0.015 (2)
C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.043 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C42	0.042 (3)	0.039 (2)	0.039 (3)	0.018 (2)	0.020 (2)	0.017 (2)
C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C43	0.056 (3)	0.053 (3)	0.054 (3)	0.021 (3)	0.033 (3)	0.014 (2)
C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.046 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C44	0.070 (4)	0.066 (4)	0.080 (4)	0.032 (3)	0.054 (4)	0.023 (3)
C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C45	0.048 (3)	0.060 (3)	0.075 (4)	0.021 (3)	0.038 (3)	0.018 (3)
C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C46	0.042 (3)	0.045 (3)	0.053 (3)	0.015 (2)	0.023 (2)	0.014 (2)
C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C47	0.051 (3)	0.051 (3)	0.067 (4)	0.026 (3)	0.029 (3)	0.013 (3)
C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C48	0.051 (3)	0.050 (3)	0.084 (5)	0.015 (3)	0.032 (3)	0.005 (3)
C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C49	0.044 (3)	0.067 (4)	0.077 (5)	0.011 (3)	0.020 (3)	-0.015 (3)
C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C50	0.049 (3)	0.087 (5)	0.045 (3)	0.026 (3)	0.019 (3)	0.003 (3)
C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C51	0.040 (3)	0.061 (3)	0.041 (3)	0.027 (2)	0.020 (2)	0.007 (2)
C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C52	0.044 (3)	0.064 (3)	0.043 (3)	0.035 (2)	0.025 (2)	0.016 (2)
C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C29	0.062 (3)	0.076 (4)	0.070 (4)	0.045 (3)	0.041 (3)	0.043 (3)
C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)	C53	0.067 (4)	0.084 (4)	0.044 (3)	0.049 (3)	0.029 (3)	0.026 (3)
C55 0.081 (4) 0.067 (4) 0.075 (4) 0.046 (3) 0.052 (4)	C54	0.092 (5)	0.094 (5)	0.062 (4)	0.066 (4)	0.048 (4)	0.046 (4)
	C55	0.081 (4)	0.067 (4)	0.075 (4)	0.046 (3)	0.052 (4)	0.041 (3)
C56 0.062 (3) 0.053 (3) 0.053 (3) 0.034 (3) 0.032 (3)	C56	0.062 (3)	0.053 (3)	0.053 (3)	0.034 (3)	0.032 (3)	0.025 (3)
Cu2 0.0401 (3) 0.0434 (3) 0.0389 (3) 0.0195 (3) 0.0192 (3)	Cu2	0.0401 (3)	0.0434 (3)	0.0389 (3)	0.0195 (3)	0.0192 (3)	0.0103 (2)
Cu1 0.0409 (3) 0.0460 (3) 0.0491 (4) 0.0218 (3) 0.0244 (3)	Cu1	0.0409 (3)	0.0460 (3)	0.0491 (4)	0.0218 (3)	0.0244 (3)	0.0136 (3)
11 0.1320 (5) 0.1664 (6) 0.0966 (4) 0.1121 (5) 0.0670 (4)	11	0.1320 (5)	0.1664 (6)	0.0966 (4)	0.1121 (5)	0.0670 (4)	0.0762(4)

I2	0.0619 (3)	0.0608 (3)	0.0672 (3)	0.01033 (19)	0.0296 (2)	0.0105 (2)
N1	0.045 (2)	0.053 (2)	0.040 (2)	0.029 (2)	0.0223 (19)	0.0163 (18)
N2	0.042 (2)	0.043 (2)	0.046 (2)	0.0190 (18)	0.0195 (19)	0.0059 (18)
N3	0.046 (2)	0.055 (3)	0.054 (3)	0.028 (2)	0.024 (2)	0.009 (2)
N4	0.046 (2)	0.051 (2)	0.051 (2)	0.021 (2)	0.031 (2)	0.015 (2)
N5	0.044 (2)	0.039 (2)	0.045 (2)	0.0182 (18)	0.023 (2)	0.0153 (17)
N6	0.042 (2)	0.046 (2)	0.053 (3)	0.0201 (19)	0.027 (2)	0.017 (2)
N7	0.040 (2)	0.043 (2)	0.039 (2)	0.0192 (18)	0.0207 (18)	0.0167 (17)
N8	0.040 (2)	0.049 (2)	0.049 (2)	0.0215 (19)	0.023 (2)	0.0126 (19)
01	0.058 (2)	0.046 (2)	0.059 (2)	0.0213 (17)	0.0337 (19)	0.0136 (17)
O2	0.068 (2)	0.065 (2)	0.048 (2)	0.022 (2)	0.029 (2)	0.0106 (18)
O3	0.053 (2)	0.060(2)	0.051 (2)	0.0343 (17)	0.0282 (17)	0.0239 (17)
O4	0.048 (2)	0.084 (3)	0.058 (2)	0.0359 (19)	0.0337 (19)	0.031 (2)
O1W	0.325 (12)	0.176 (7)	0.233 (9)	0.142 (8)	0.225 (10)	0.116 (7)

Geometric parameters (Å, °)

C1—N4	1.322 (6)	C31—H31	0.9300
C1—C2	1.384 (8)	C32—C33	1.385 (7)
С1—Н1	0.9300	С32—Н32	0.9300
C2—C3	1.357 (9)	C33—C34	1.384 (7)
С2—Н2	0.9300	C33—C35	1.489 (6)
C3—C4	1.372 (9)	C34—C29	1.372 (7)
С3—Н3	0.9300	С34—Н34	0.9300
C4—C5	1.387 (8)	C35—O4	1.243 (6)
C4—H4	0.9300	C35—O3	1.289 (6)
C5—N4	1.341 (6)	C37—N8	1.342 (6)
C5—C6	1.480 (8)	C37—C38	1.370 (8)
C6—N3	1.340 (7)	С37—Н37	0.9300
C6—C7	1.377 (8)	C38—C39	1.358 (9)
C7—C8	1.377 (11)	С38—Н38	0.9300
С7—Н7	0.9300	C39—C40	1.377 (8)
C8—C9	1.348 (11)	С39—Н39	0.9300
С8—Н8	0.9300	C40—C41	1.384 (7)
C9—C10	1.395 (9)	C40—H40	0.9300
С9—Н9	0.9300	C41—N8	1.344 (6)
C10—N3	1.344 (7)	C41—C42	1.487 (6)
C10—H10	0.9300	C42—N7	1.351 (6)
C11—N5	1.346 (6)	C42—C43	1.358 (7)
C11—C12	1.369 (7)	C43—C44	1.393 (8)
C11—H11	0.9300	C43—H43	0.9300
C12—C13	1.380 (8)	C44—C45	1.368 (8)
C12—H12	0.9300	C44—H44	0.9300
C13—C14	1.364 (8)	C45—C46	1.360 (7)
C13—H13	0.9300	C45—H45	0.9300
C14—C15	1.380 (7)	C46—N7	1.338 (6)
C14—H14	0.9300	C46—H46	0.9300
C15—N5	1.357 (6)	C47—N2	1.336 (7)
C15—C16	1.476 (7)	C47—C48	1.371 (8)

C16—N6	1.345 (6)	C47—H47	0.9300
C16—C17	1.384 (7)	C48—C49	1.370 (10)
C17—C18	1.375 (8)	C48—H48	0.9300
С17—Н17	0.9300	C49—C50	1.394 (9)
C18—C19	1.382 (9)	C49—H49	0.9300
C18—H18	0.9300	C50—C51	1.393 (7)
C19—C20	1.372 (8)	С50—Н50	0.9300
С19—Н19	0.9300	C51—N2	1.349 (6)
C20—N6	1.344 (6)	C51—C52	1.484 (7)
C20—H20	0.9300	C52—N1	1.339 (6)
C21—O2	1.233 (6)	C52—C53	1.387 (7)
C21—O1	1.284 (6)	С29—Н29	0.9300
C21—C22	1.490 (7)	C53—C54	1.366 (8)
C22—C23	1.373 (7)	С53—Н53	0.9300
C22—C27	1.381 (7)	C54—C55	1.372 (8)
C23—C24	1.380 (8)	C54—H54	0.9300
С23—Н23	0.9300	C55—C56	1.375 (7)
C24—C25	1.373 (9)	С55—Н55	0.9300
C24—H24	0.9300	C56—N1	1.336 (6)
C25—C26	1.369 (8)	С56—Н56	0.9300
C25—C28	1.492 (8)	Cu1—O1	1.976 (4)
C26—C27	1.381 (8)	Cu1—O2	2.769 (4)
C26—H26	0.9300	Cu1—N6	1.987 (4)
C27—H27	0.9300	Cu1—N3	2.000 (4)
C28—H28A	0.9600	Cu1—N5	2.060 (4)
C28—H28B	0.9600	Cu1—N4	2.192 (4)
C28—H28C	0.9600	Cu2—O3	1.974 (3)
C36—C30	1.506 (8)	Cu2—O4	2.832 (3)
С36—Н36А	0.9600	Cu2—N8	1.997 (4)
С36—Н36В	0.9600	Cu2—N2	2.001 (4)
С36—Н36С	0.9600	Cu2—N7	2.038 (4)
C30—C31	1.367 (8)	Cu2—N1	2.181 (4)
C30—C29	1.379 (8)	O1W—H2W	0.8200
C31—C32	1.385 (8)	O1W—H1W	0.8200
N4—C1—C2	122.5 (5)	С37—С38—Н38	120.4
N4—C1—H1	118.7	C38—C39—C40	119.8 (5)
C2—C1—H1	118.7	С38—С39—Н39	120.1
C3—C2—C1	118.7 (6)	С40—С39—Н39	120.1
С3—С2—Н2	120.6	C39—C40—C41	118.5 (5)
С1—С2—Н2	120.6	C39—C40—H40	120.7
C2—C3—C4	119.3 (6)	C41—C40—H40	120.7
С2—С3—Н3	120.3	N8—C41—C40	121.6 (5)
С4—С3—Н3	120.3	N8—C41—C42	115.0 (4)
C3—C4—C5	119.5 (6)	C40—C41—C42	123.5 (5)
C3—C4—H4	120.2	N7—C42—C43	122.7 (4)
C5—C4—H4	120.2	N7-C42-C41	113.9 (4)
N4—C5—C4	120.7 (5)	C43—C42—C41	123.4 (4)
N4—C5—C6	115.5 (4)	C42—C43—C44	118.7 (5)
C4—C5—C6	123.8 (5)	C42—C43—H43	120.7

N3—C6—C7	121.3 (6)	C44—C43—H43	120.7
N3—C6—C5	116.0 (4)	C45—C44—C43	118.8 (5)
C7—C6—C5	122.8 (6)	C45—C44—H44	120.6
C6—C7—C8	118.7 (7)	C43—C44—H44	120.6
С6—С7—Н7	120.7	C46—C45—C44	119.2 (5)
С8—С7—Н7	120.7	C46—C45—H45	120.4
C9—C8—C7	120.6 (7)	C44—C45—H45	120.4
С9—С8—Н8	119.7	N7—C46—C45	123.0 (5)
С7—С8—Н8	119.7	N7—C46—H46	118.5
C8—C9—C10	118.8 (7)	C45—C46—H46	118.5
С8—С9—Н9	120.6	N2—C47—C48	123.2 (6)
С10—С9—Н9	120.6	N2—C47—H47	118.4
N3—C10—C9	120.8 (7)	C48—C47—H47	118.4
N3—C10—H10	119.6	C49—C48—C47	117.8 (6)
С9—С10—Н10	119.6	C49—C48—H48	121.1
N5-C11-C12	122.4 (5)	C47—C48—H48	121.1
N5-C11-H11	118.8	C48—C49—C50	120.3 (6)
C12—C11—H11	118.8	C48—C49—H49	119.8
C11—C12—C13	118.8 (5)	С50—С49—Н49	119.8
С11—С12—Н12	120.6	C51—C50—C49	118.7 (6)
С13—С12—Н12	120.6	С51—С50—Н50	120.6
C14—C13—C12	119.5 (5)	С49—С50—Н50	120.6
C14—C13—H13	120.3	N2	120.2 (5)
С12—С13—Н13	120.3	N2—C51—C52	116.7 (4)
C13—C14—C15	119.7 (5)	C50—C51—C52	123.0 (5)
C13—C14—H14	120.1	N1—C52—C53	121.9 (5)
C15-C14-H14	120.1	N1—C52—C51	114.6 (4)
N5-C15-C14	121.0 (5)	C53—C52—C51	123.5 (5)
N5-C15-C16	114.4 (4)	C34—C29—C30	121.6 (5)
C14—C15—C16	124.6 (5)	С34—С29—Н29	119.2
N6-C16-C17	120.4 (5)	С30—С29—Н29	119.2
N6—C16—C15	115.3 (4)	C54—C53—C52	118.8 (5)
C17—C16—C15	124.3 (5)	С54—С53—Н53	120.6
C18—C17—C16	120.1 (6)	С52—С53—Н53	120.6
C18—C17—H17	119.9	C53—C54—C55	119.7 (5)
C16—C17—H17	119.9	С53—С54—Н54	120.1
C17—C18—C19	118.7 (6)	С55—С54—Н54	120.1
C17—C18—H18	120.7	C54—C55—C56	118.6 (6)
C19—C18—H18	120.7	С54—С55—Н55	120.7
C20—C19—C18	119.3 (6)	С56—С55—Н55	120.7
С20—С19—Н19	120.4	N1—C56—C55	122.6 (5)
C18—C19—H19	120.4	N1—C56—H56	118.7
N6-C20-C19	121.7 (5)	С55—С56—Н56	118.7
N6—C20—H20	119.1	O1—Cu1—O2	52.46 (16)
C19—C20—H20	119.1	O1—Cu1—N6	92.58 (16)
O2—C21—O1	123.2 (5)	O1—Cu1—N3	94.78 (16)
O2—C21—C22	120.5 (5)	O2—Cu1—N6	96.13 (16)
O1—C21—C22	116.3 (5)	O2—Cu1—N3	90.52 (16)
C23—C22—C27	117.5 (5)	N6—Cu1—N3	172.15 (16)

C23—C22—C21	122.2 (5)	O1—Cu1—N5	152.67 (15)
C27—C22—C21	120.3 (5)	O2—Cu1—N5	101.75 (16)
C22—C23—C24	120.7 (6)	N6—Cu1—N5	80.38 (16)
С22—С23—Н23	119.7	N3—Cu1—N5	94.23 (16)
С24—С23—Н23	119.7	O1—Cu1—N4	102.51 (15)
C25—C24—C23	122.3 (6)	O2—Cu1—N4	152.05 (16)
C25—C24—H24	118.9	N6—Cu1—N4	97.40 (16)
C23—C24—H24	118.9	N3—Cu1—N4	78.34 (17)
C26—C25—C24	116.8 (5)	N5—Cu1—N4	104.56 (15)
C26—C25—C28	121.7 (6)	O3—Cu2—O4	51.67 (15)
C24—C25—C28	121.6 (6)	O3—Cu2—N8	90.84 (15)
C25—C26—C27	121.7 (6)	O3—Cu2—N2	91.78 (15)
С25—С26—Н26	119.1	O4—Cu2—N8	93.70 (15)
С27—С26—Н26	119.1	O4—Cu2—N2	86.63 (15)
C26—C27—C22	121.0 (5)	N8—Cu2—N2	176.92 (16)
С26—С27—Н27	119.5	O3—Cu2—N7	156.24 (15)
С22—С27—Н27	119.5	O4—Cu2—N7	106.46 (15)
C25—C28—H28A	109.5	N8—Cu2—N7	80.59 (16)
C25—C28—H28B	109.5	N2—Cu2—N7	96.37 (16)
H28A—C28—H28B	109.5	O3—Cu2—N1	94.97 (14)
C25—C28—H28C	109.5	O4—Cu2—N1	143.21 (15)
H28A—C28—H28C	109.5	N8—Cu2—N1	102.89 (16)
H28B-C28-H28C	109.5	N2—Cu2—N1	78.49 (16)
С30—С36—Н36А	109.5	N7—Cu2—N1	108.50 (14)
C30—C36—H36B	109.5	C56—N1—C52	118.4 (4)
H36A—C36—H36B	109.5	C56—N1—Cu2	128.6 (3)
С30—С36—Н36С	109.5	C52—N1—Cu2	112.8 (3)
H36A—C36—H36C	109.5	C47—N2—C51	119.7 (4)
H36B—C36—H36C	109.5	C47—N2—Cu2	123.0 (4)
C31—C30—C29	116.7 (5)	C51—N2—Cu2	117.3 (3)
C31—C30—C36	122.4 (6)	C6—N3—C10	119.8 (5)
C29—C30—C36	120.9 (6)	C6—N3—Cu1	117.7 (3)
C30—C31—C32	123.3 (6)	C10—N3—Cu1	122.0 (4)
С30—С31—Н31	118.4	C1—N4—C5	119.2 (5)
C32—C31—H31	118.4	C1—N4—Cu1	129.0 (3)
C33—C32—C31	119.1 (5)	C5—N4—Cu1	111.7 (3)
С33—С32—Н32	120.5	C11—N5—C15	118.6 (4)
C31—C32—H32	120.5	C11—N5—Cu1	127.7 (3)
C34—C33—C32	118.3 (5)	C15—N5—Cu1	113.7 (3)
C34—C33—C35	121.2 (4)	C20—N6—C16	119.8 (4)
C32—C33—C35	120.5 (5)	C20—N6—Cu1	124.0 (4)
C29—C34—C33	121.1 (5)	C16—N6—Cu1	116.1 (3)
С29—С34—Н34	119.5	C46—N7—C42	117.5 (4)
С33—С34—Н34	119.5	C46—N7—Cu2	127.8 (3)
O4—C35—O3	123.7 (4)	C42—N7—Cu2	114.5 (3)
O4—C35—C33	120.0 (4)	C37—N8—C41	118.6 (4)
O3—C35—C33	116.3 (4)	C37—N8—Cu2	125.8 (4)
N8—C37—C38	122.2 (6)	C41—N8—Cu2	115.5 (3)
N8—C37—H37	118.9	C21—O1—Cu1	110.0 (3)

С38—С37—Н37	118.9	C35—O3—Cu2		111.0 (3)
C39—C38—C37	119.2 (5)	H2W—O1W—H1W		103.5
С39—С38—Н38	120.4			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1W—H1W…I1 ⁱ	0.82	3.15	3.935 (8)	161
O1W—H2W…I1 ⁱⁱ	0.82	2.76	3.568 (8)	170
Symmetry codes: (i) $-x+1, -y+1, -z+1$;	(ii) <i>x</i> +1, <i>y</i> +1, <i>z</i> .			

